GntR Family of Bacterial Transcription Factors and Their DNA Binding Motifs: Structure, Positioning and Co-Evolution
نویسندگان
چکیده
The GNTR family of transcription factors (TFs) is a large group of proteins present in diverse bacteria and regulating various biological processes. Here we use the comparative genomics approach to reconstruct regulons and identify binding motifs of regulators from three subfamilies of the GNTR family, FADR, HUTC, and YTRA. Using these data, we attempt to predict DNA-protein contacts by analyzing correlations between binding motifs in DNA and amino acid sequences of TFs. We identify pairs of positions with high correlation between amino acids and nucleotides for FADR, HUTC, and YTRA subfamilies and show that the most predicted DNA-protein interactions are quite similar in all subfamilies and conform well to the experimentally identified contacts formed by FadR from E. coli and AraR from B. subtilis. The most frequent predicted contacts in the analyzed subfamilies are Arg-G, Asn-A, Asp-C. We also analyze the divergon structure and preferred site positions relative to regulated genes in the FADR and HUTC subfamilies. A single site in a divergon usually regulates both operons and is approximately in the middle of the intergenic area. Double sites are either involved in the co-operative regulation of both operons and then are in the center of the intergenic area, or each site in the pair independently regulates its own operon and tends to be near it. We also identify additional candidate TF-binding boxes near palindromic binding sites of TFs from the FADR, HUTC, and YTRA subfamilies, which may play role in the binding of additional TF-subunits.
منابع مشابه
Comparative genomics of pyridoxal 5′-phosphate-dependent transcription factor regulons in Bacteria
The MocR-subfamily transcription factors (MocR-TFs) characterized by the GntR-family DNA-binding domain and aminotransferase-like sensory domain are broadly distributed among certain lineages of Bacteria. Characterized MocR-TFs bind pyridoxal 5'-phosphate (PLP) and control transcription of genes involved in PLP, gamma aminobutyric acid (GABA) and taurine metabolism via binding specific DNA oper...
متن کاملBioinformatics Genome-Wide Characterization of the WRKY Gene Family in Sorghum bicolor
The WRKY gene family encodes a large group of transcription factors that regulate genes involved in plant response to biotic and abiotic stresses. Sorghum is a notable grain and forage crop in semi-arid regions because of its unusual tolerance against hot and dry environments. We identified a set of 85 WRKY genes in the S. bicolor genome and classified them into three groups (I–III). Among the ...
متن کاملCrystal Structures of the Global Regulator DasR from Streptomyces coelicolor: Implications for the Allosteric Regulation of GntR/HutC Repressors
Small molecule effectors regulate gene transcription in bacteria by altering the DNA-binding affinities of specific repressor proteins. Although the GntR proteins represent a large family of bacterial repressors, only little is known about the allosteric mechanism that enables their function. DasR from Streptomyces coelicolor belongs to the GntR/HutC subfamily and specifically recognises operat...
متن کاملMcbR/YncC: Implications for the Mechanism of Ligand and DNA Binding by a Bacterial GntR Transcriptional Regulator Involved in Biofilm Formation
MqsR-controlled colanic acid and biofilm regulator (McbR, also known as YncC) is the protein product of a highly induced gene in early Escherichia coli biofilm development and has been regarded as an attractive target for blocking biofilm formation. This protein acts as a repressor for genes involved in exopolysaccharide production and an activator for genes involved in stress response. To bett...
متن کاملTowards Novel Amino Acid-Base Contacts in Gene Regulatory Proteins: AraR – A Case Study
AraR is a transcription factor involved in the regulation of carbon catabolism in Bacillus subtilis. This regulator belongs to the vast GntR family of helix-turn-helix (HTH) bacterial metabolite-responsive transcription factors. In this study, AraR-DNA specific interactions were analysed by an in vitro missing-contact probing and validated using an in vivo model. We show that amino acid E30 of ...
متن کامل